
Pre-defined types

• We already saw function types: a -> b

• We also saw elementary types: Int, Float, Double, Char, and so on

• Tuples group multiple types: (), (a, b), (a, b, c), and so on

 harmonicMeanT :: (Double, Double) -> Double
 harmonicMeanT (x, y) = (2 * x * y)/(x + y)

 harmonicMeanT :: (Double, Double) -> Double
 harmonicMeanT pxy
 = (2 * (fst pxy) * (snd pxy))/(fst pxy) + (snd pxy))

fst :: (a, b) -> a — functions defined in Prelude
snd :: (a, b) -> b

Lists

• Lists are either empty: []

• …or consist of a head and a tail: x : xs Pronounced "cons"

Pronounced "nil"

• Lists are homogenous — all elements in one list have the same type

• List are parametric — different lists may contain elements of different type

Some operations on lists

• Length of a list

• Concatenating two lists

• Reversing the elements of a list

• Mapping a function over a list

In Haskell!

